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Abstract

We establish conditions giving the existence of bipullbacks in bicategories of frac-
tions. We apply our results to construct a π0-π1 exact sequence associated with a
fractor between groupoids internal to a pointed exact category.
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1 Introduction

A pointed exact category (in the sense of [3]) is a finitely complete category with a zero ob-
ject, a pullback-stable (regular epimorphisms, monomorphisms) factorization system and
where equivalence relations are kernel pairs. Let A be such a pointed exact category, and
let F : A→ B be a functor between internal groupoids in A. In [16], we have constructed
a π0-π1 exact sequence

π1(K(F ))→ π1(A)→ π1(B)→ π0(K(F ))→ π0(A)→ π0(B)

where π1(A) is the internal group of automorphisms on the base point of A, π0(A) is
the object of connected components of A, and K(F ) is the bikernel of F . This sequence
subsumes several relevant special cases: if A is the category of pointed sets, we get the
Gabriel-Zisman exact sequence of [10] and, if F is a fibration, the Brown exact sequence
of [7]; if A is semi-abelian or abelian, we get the exact sequence of the classical snake
lemma when F is a fibration, and the exact sequence of the more general snail lemma if
F is an arbitrary functor (see [6, 13, 20]).
A special case of particular interest is when A is the category of groups. In this case, the
π0-π1 sequence already appears in [9]; in fact, the sequence in [9] is even more general,
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loro Applicazioni is gratefully acknowledged.
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because it is obtained starting from a monoidal functor between groupoids in groups, and
not necessarily from an internal functor. The precise relation between internal functors
and monoidal functors between internal groupoids in groups has been established in [19]:
monoidal functors are precisely fractions of internal functors with respect to weak equiv-
alences (in the sense of [8]). When A is an arbitrary exact category, the bicategory of
fractions of Grpd(A) with respect to weak equivalences has been described in [15] using
fractors (fractors are a particular kind of profunctors). The aim of this note is to complete
the result of [16], showing that the π0-π1 exact sequence can be constructed starting from
any fractor F : A# B between internal groupoids in A pointed exact.
Since the 2-functors

π0 : Grpd(A)→ A and π1 : Grpd(A)→ Grp(A)

send weak equivalences onto isomorphisms (see Lemma 4.5 in [16]), they can be extended to
the bicategory of fractions. Therefore, what remains to be done is to construct bipullbacks
(and, in particular, bikernels) in the bicategory of fractions using bipullbacks in the 2-
category of internal functors.
In order to do so, the main result of this paper (Theorem 3.1) states that if B is a bicategory
with bipullbacks and Σ has a right calculus of fractions in the sense of [17], the bicategory
of fractions

PΣ : B→ B[Σ−1]

preserves bipullbacks and B[Σ−1] has them. Since this is the case for the bicategory
Grpd(A) with Σ the class of weak equivalences, we can extend the main result of [16]
getting a π0-π1 exact sequence from any internal fractor.

In this paper, the composition of two arrows

f // g //

will be denoted as f · g, or simply by fg.
In order to shorten notation, we will use coherence theorems for bicategories as in [14].
Therefore, coherence isomorphisms will not be written explicitly.
We will sometimes need to change our base universe to a bigger one in order to define
properly some (bi)categories. However, we will omit to say it when it has to be done.

2 A reminder on (bi)categories of fractions

2.1. Categories of fractions have been introduced by P. Gabriel and M. Zisman in [10]
as a useful tool for algebraic topology and homotopy theory. They encode the universal
solution to the problem of converting an arrow into an isomorphism. More precisely, if A
is a category and Σ is a class of arrows in A, the category of fractions of A with respect
to Σ is a functor

PΣ : A → A[Σ−1]

universal among all functors F : A → C such that F(s) is an isomorphism for all s ∈ Σ.
In other words, for every category C the functor induced by composition with PΣ is an
equivalence of categories

PΣ · − : Funct(A[Σ−1], C)→ FunctΣ(A, C)

2



where FunctΣ(A, C) is the category of those functors F : A → C such that F(s) is an
isomorphism for all s ∈ Σ.
Usually, the description of the category of fractions is quite complicated (see Chapter 5
in [5] for a detailed discussion), but if the class Σ has a right calculus of fractions, then
the description of A[Σ−1] becomes much more clear. To have a right calculus of fractions
means that:

CF1. Σ contains the identity arrows.

CF2. Σ is closed under composition.

CF3. Given arrows f and s with same codomain, if s ∈ Σ then there exist arrows s′ and
f ′ such that s′ · f = f ′ · s and s′ ∈ Σ.

f ′ //

s′

��
s

��
f
//

CF4. Given parallel arrows f and g, if there exists an arrow s ∈ Σ such that f · s = g · s,
then there exists an arrow s′ ∈ Σ such that s′ · f = s′ · g.

s′ //
f //
g
// s //

The dual notion of left calculus of fractions has also been studied for categories (see for
example 5.3.1 in [5]). Whereas the bicategorical version of right calculus of fractions has
been introduced in [17] (see below), at our knowledge the bicategorical version of left
calculus of fractions has never been considered and we do not need it in this paper.

2.2. If the class Σ has a right calculus of fractions, the category A[Σ−1] can be described
as follows:

- The objects of A[Σ−1] are those of A.

- An arrow in A[Σ−1] from A to B is an equivalence class of spans (s, f) with s ∈ Σ

A I
soo f // B

two spans (s, f) and (s′, f ′) being equivalent if there exist arrows x, x′ in A such that
x · s = x′ · s′ ∈ Σ and x · f = x′ · f ′.

I
s

~~

f

  
A X

x

OO

x′

��

B

I ′
s′

__

f ′

>>

Moreover, if A has pullbacks and Σ has a right calculus of fractions, then A[Σ−1] has
pullbacks and PΣ : A → A[Σ−1] preserves them [5].
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2.3. If B is a bicategory and Σ is a class of arrows in B, the bicategory of fractions of B
with respect to Σ is a morphism of bicategories (also called a pseudo-functor)

PΣ : B→ B[Σ−1]

which encodes the universal solution to the problem of sending an arrow of Σ into an
equivalence. This problem has been studied by D. Pronk in [17], providing a bicategorical
version of right calculus of fractions.

BF1. Σ contains the equivalences.

BF2. Σ is closed under composition.

BF3. Given arrows F and S with same codomain, if S ∈ Σ then there exist arrows S′ ∈ Σ
and F ′ and a 2-iso S′ · F ∼= F ′ · S.

F ′ //

S′

��
S

��
F
//

∼=

BF4. For every 2-cell (resp. 2-iso) α : F ·W ⇒ G ·W with W ∈ Σ there exist a V ∈ Σ and
a 2-cell (resp. 2-iso) β : V · F ⇒ V ·G such that V · α = β ·W

V // F //
G
// W //

and for any two such pairs (V, β) and (V ′, β′), there exist U,U ′ and a 2-iso ε : U ·V ⇒
U ′ · V ′

V

��∼

ε
��

U
??

U ′ ��

F //
G
// W //

V ′

??

such that U · V ∈ Σ and the diagram

U · V · F U ·β +3

ε·F
��

U · V ·G

ε·G
��

U ′ · V ′ · F
U ′·β′

+3 U ′ · V ′ ·G

commutes.

BF5. Given arrows F,G and a 2-iso F ∼= G, then F ∈ Σ if and only if G ∈ Σ.

2.4. If the class Σ has a right calculus of fractions, the bicategory B[Σ−1] can be described
as follows:

- The objects of B[Σ−1] are those of B.

- 1-cells A→ B in B[Σ−1] are spans (W,F ) with W ∈ Σ.

A CWoo F // B
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- 2-cells (W,F ) ⇒ (V,G) are equivalent classes of quadruples (U1, U2, α1, α2) where
U1 ·W ∈ Σ, α1 : U1 ·W ⇒ U2 · V is a 2-iso and α2 : U1 · F ⇒ U2 ·G is a 2-cell.

C
W

��

F

&&∼

α1

��
E

U1

??

U2 ��

A B

D
V

??

G

88α2

��

Two quadruples (U1, U2, α1, α2) and (U ′1, U
′
2, α
′
1, α
′
2) are equivalent when there exist

C
W

��

F

&&∼
α1

��
E′

U ′1
//

U ′2 //

F R1 //R2oo E

U1

??

U2 ��

A B

D
V

??

G

88α2

��

γ1∼

��

γ2

∼
�	

R1 : F→ E, R2 : F→ E′ and two 2-isos γ1 : R2 ·U ′1 ⇒ R1 ·U1 and γ2 : R1 ·U2 ⇒ R2 ·U ′2
such that R1 · U1 ·W ∈ Σ and the following diagrams commute.

R2 · U ′1 ·W
γ1·W +3

R2·α′1
��

R1 · U1 ·W

R1·α1

��
R2 · U ′2 · V R1 · U2 · V

γ2·V
ks

R2 · U ′1 · F
γ1·F +3

R2·α′2
��

R1 · U1 · F

R1·α2

��
R2 · U ′2 ·G R1 · U2 ·G

γ2·G
ks

- 1-cells composition is obtained by completing two consecutive spans with a span
provided by BF3, and then forgetting the 2-cell. Vertical composition of 2-cells is
obtained by pasting two vertically consecutive 2-cells with a square coming from
BF3, horizontal composition is described by a vertical composition of two whisker-
ings. Different choices made possible by BF3 and BF4 will give rise to biequivalent
bicategories. More details on compositions and identities can be found in [17].

The 2-isos in B[Σ−1] are exactly the 2-cells which can be represented by a quadruple
(U1, U2, α1, α2) where α2 is a 2-iso of B. Moreover, the universal morphism

PΣ : B→ B[Σ−1]

is defined by: PΣ(A) = A, PΣ(F ) = (1A, F ) and PΣ(α) = [(1A, 1A, 11A , α)]. For more
details, see [17].

2.5. Recall that a bipullback (called 2-pullback in [4]) of two arrows F : A → B and
G : C→ B in a bicategory B is a diagram of the form

P G′ //

F ′

��

A

F
��

C
π

;C∼

G
// B

with π : F ′ ·G⇒ G′ · F a 2-iso and satisfying the following universal property:
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BP1. For any diagram of the form

X H //

K
��

A

F
��

C
µ

;C∼

G
// B

with µ a 2-iso, there exist an arrow T : X→ P and 2-isos γ : T ·G′ ⇒ H, δ : T ·F ′ ⇒ K
making commutative the following diagram.

T · F ′ ·G
T ·π
��

δ·G +3 K ·G
µ

��
T ·G′ · F

γ·F
+3 H · F

BP2. Given 1-cells T, S : X⇒ P and 2-isos α : T · F ′ ⇒ S · F ′ and β : T ·G′ ⇒ S ·G′, if

T · F ′ ·G α·G +3

T ·π
��

S · F ′ ·G

S·π
��

T ·G′ · F
β·F
+3 S ·G′ · F

commutes, then there exists a unique 2-cell ϕ : T ⇒ S such that ϕ · F ′ = α and
ϕ ·G′ = β. (It is not hard to prove that the 2-cell ϕ of BP2 is actually a 2-iso.)

2.6. In [16], we focused on strong h-pullbacks instead of bipullbacks. The universal prop-
erty of strong h-pullbacks subsumes that of bipullbacks, but strong h-pullbacks are deter-
mined up to isomorphism, whereas bipullbacks are determined up to equivalence. This is
why the notion of bipullback is the ‘correct’ notion of 2-dimensional pullback in the context
of bicategories of fractions. Moreover, we will use the fact that pasting together bipull-
backs we still get a bipullback (which is not the case if we work with strong h-pullbacks).
See [4, 11] for more details on bipullbacks and strong h-pullbacks.

3 Preservation of bipullbacks

This section is devoted to the proof of our main theorem, generalising the 1-dimensional
case.

Theorem 3.1. Let B be a bicategory with bipullbacks and Σ a class of arrows in B having
a right calculus of fractions. Then B[Σ−1] has bipullbacks and the universal morphism
PΣ : B→ B[Σ−1] preserves them.

Proof. Consider two arrows in B[Σ−1]

F
S

��

R

��
A B

G
U

��

T

��
C B

with S,U ∈ Σ, and the bipullback of the right legs in B.

P

R′

��

T ′ // F

R
��

G
T
//

π

;C∼

B
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If we can prove that

P
(1,R′)

��

(1,T ′) // F
(1,R)
��

G
(1,T )

//
PΣ(π)

4<∼

B

is still a bipullback in B[Σ−1], then the bipullback of (S,R) and (U, T ) in B[Σ−1] is
obtained pasting together the four bipullbacks below.

P
(1,R′)

��

(1,T ′) // F
(1,R)
��

(1,S) // A
(S,R)
��

G
(1,U)

��

(1,T )
//

PΣ(π)

4<∼

B
1B
��

1B
//

∼=

B
1B
��

C
(U,T )

//

∼=

B
1B

//

∼=

B

The fact that the lower-right square is a bipullback is obvious, and that the upper-right
and lower-left are bipullbacks is easily proved. Indeed, for the upper-right square, just
compose the obvious bipullback

A 1A //

(S,R)
��

∼=

A
(S,R)
��

B
1B

// B

with the equivalence (1, S) : F→ A. The lower-left one is treated similarly.
Hence let us prove that the upper left square is a bipullback. We are going to prove
separately the two parts of the universal property of the bipullback, that is, BP1 and BP2.
BP1. Consider a diagram in B[Σ−1]

V
(Y1,Y2)

��

(X1,X2) // F
(1,R)
��

G
(1,T )

//
µ

4<∼

B

where µ is represented by

Y
Y1

��

Y2·T

&&∼

µ1

��
E

U1

??

U2 ��

V B

X
X1

??

X2·R

88

∼

µ2

��

We thus get the following diagram in B

E U2·X2 //

U1·Y2

��

F

R
��

G
µ2

;C∼

T
// B
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and by the universal property of the bipullback BP1, an arrow L : E → P and two 2-isos
γ : L · T ′ ⇒ U2 ·X2 and δ : L ·R′ ⇒ U1 · Y2 which make the diagram

L ·R′ · T
L·π
��

δ·T +3 U1 · Y2 · T
µ2

��
L · T ′ ·R

γ·R
+3 U2 ·X2 ·R

commutative. This gives us a 1-cell (U1 · Y1, L) : V→ P in B[Σ−1] and two 2-isos

[(1E, U2, µ1, γ)] : (U1 · Y1, L) · (1P, T ′)⇒ (X1, X2)

and
[(1E, U1, 1U1·Y1 , δ)] : (U1 · Y1, L) · (1P, R′)⇒ (Y1, Y2).

E
U1·Y1

��

L·T ′

&&∼

µ1

��
E

1E
??

U2 ��

V F

X

X1

??

X2

88

∼

γ

��

E
U1·Y1

��

L·R′

&&∼

1U1·Y1
��

E

1E
??

U1 ��

V G

Y

Y1

??

Y2

88

∼

δ
��

The compatibility condition linking those two 2-isos can be deduced from the one linking
γ and δ.
BP2. Now, suppose we have two arrows V⇒ P in B[Σ−1]

Hi

Wi

~~

Hi

��
V P

for i ∈ {1, 2} together with two 2-isos

α = [(U1, U2, α1, α2)] : (W1, H1) · (1P, R′)⇒ (W2, H2) · (1P, R′)

and
β = [(V1, V2, β1, β2)] : (W1, H1) · (1P, T ′)⇒ (W2, H2) · (1P, T ′).

H1

W1

  

H1·R′

&&∼

α1

��
E1

U1

>>

U2   

V G

H2

W2

>>

H2·R′

88

∼

α2

��

H1

W1

  

H1·T ′

&&∼

β1

��
E2

V1

>>

V2   

V F

H2

W2

>>

H2·T ′

88

∼

β2

��

Suppose also that the diagram

(W1, H1) · (1P, R′) · (1G, T )
α·(1G,T ) +3

(W1,H1)·PΣ(π)
��

(W2, H2) · (1P, R′) · (1G, T )

(W2,H2)·PΣ(π)
��

(W1, H1) · (1P, T ′) · (1F, R)
β·(1F,R)

+3 (W2, H2) · (1P, T ′) · (1F, R)
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commutes in B[Σ−1]. This means that there exist S1 : K → E1, S2 : K → E2 and two
2-isos

H1

W1

  

H1·R′·T

))∼

α1

��
E2

V1
//

V2 //

K S1 //S2oo E1

U1

>>

U2   

V B

H2

W2

>>

H2·T ′·R

55

∼

(α2·T )◦(U2·H2·π)
��

γ1∼

��

γ2

∼

�	

γ1 : S2 · V1 ⇒ S1 ·U1 and γ2 : S1 ·U2 ⇒ S2 · V2 such that S1 ·U1 ·W1 ∈ Σ and the following
diagrams commute.

S2V1W1
γ1·W1 +3

S2·β1

��

S1U1W1

S1·α1

��
S2V2W2 S1U2W2

γ2·W2

ks

(1)

S1U1H1R
′T

S1·α2·T +3 S1U2H2R
′T

S1U2H2·π +3 S1U2H2T
′R

γ2·H2T ′R
��

S2V1H1R
′T

γ1·H1R′T

KS

S2V1H1·π
+3 S2V1H1T

′R
S2·β2·R

+3 S2V2H2T
′R

(2)

Now, we consider the following 2-isos:

S1U1H1R
′ S1·α2 +3S1U2H2R

′

and

S1U1H1T
′ γ−1

1 ·H1·T ′ +3 S2V1H1T
′ S2·β2 +3 S2V2H2T

′ γ−1
2 ·H2·T ′ +3 S1U2H2T

′.

The commutativity of (2) and the property BP2 of the bipullback at P give us a 2-iso
δ : S1U1H1 ⇒ S1U2H2 such that δ ·R′ = S1 · α2 and

δ · T ′ = (γ−1
1 ·H1 · T ′) ◦ (S2 · β2) ◦ (γ−1

2 ·H2 · T ′).

So, we can construct a 2-iso ϕ = [(S1 · U1, S1 · U2, S1 · α1, δ)] : (W1, H1)⇒ (W2, H2).

H1

W1

  

H1

&&∼

S1·α1

��
K

S1·U1

>>

S1·U2   

V P

H2

W2

>>

H2

88

∼

δ
��

The identities ϕ · (1P, R′) = α and ϕ · (1P, T ′) = β follow from the diagrams

H1

W1

  

H1·R′

((∼

α1

��
K

S1·U1
//

S1·U2 //

K S1 //1Koo E1

U1

>>

U2   

V G

H2

W2

>>

H2·R′

66

∼

α2

��

1∼

��

1

∼

��
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and
H1

W1

  

H1·T ′

((∼

S1·α1

��
E2

V1
//

V2 //

K 1K //S2oo K

S1·U1

>>

S1·U2

  

V F

H2

W2

>>

H2·T ′

66

∼

δ·T ′
��

γ1∼

��

γ2

∼

�	

where the coherence axioms can be deduced from the definition of δ and the commu-
tativity of (1). It remains to prove the uniqueness of such a 2-cell ϕ. Suppose ϕ′ =
[(U3, U4, ε1, ε2)] : (W1, H1)⇒ (W2, H2) satisfies ϕ′ · (1P, R′) = α and ϕ′ · (1P, T ′) = β. The
first identity implies the existence of a diagram

H1

W1

  

H1R′

((∼
ε1
��

E1

U1
//

U2 //

E4
U5 //U6oo E3

U3

>>

U4   

V G

H2

W2

>>

H2R′

66ε2·R′
��

ε3∼

��

ε4

∼

��

where U5U3W1 ∈ Σ,
U6 · α1 = (ε3 ·W1) ◦ (U5 · ε1) ◦ (ε4 ·W2) (3)

and
U6 · α2 = (ε3 ·H1R

′) ◦ (U5 · ε2 ·R′) ◦ (ε4 ·H2R
′). (4)

Since ϕ′ = [(U5U3, U5U4, U5 · ε1, U5 · ε2)], the second identity means that there exists a
diagram

H1

W1

  

H1T ′

((∼

U5·ε1
��

E2

V1
//

V2 //

E5
U7 //U8oo E4

U5U3

>>

U5U4

  

V F

H2

W2

>>

H2T ′

66U5·ε2·T ′
��

ε5∼

��

ε6

∼

��

where U7U5U3W1 ∈ Σ,

U8 · β1 = (ε5 ·W1) ◦ (U7U5 · ε1) ◦ (ε6 ·W2) (5)

and
U8 · β2 = (ε5 ·H1T

′) ◦ (U7U5 · ε2 · T ′) ◦ (ε6 ·H2T
′). (6)

Now, since S2V1W1 and V1W1 are both in Σ, by axioms BF2, BF3 and BF4, there exist
two arrows U9 and U10 with U9 ∈ Σ and a 2-iso ε7 : U9U8 ⇒ U10S2.

E6

U9

��

U10 // K
S2

��
E5

U8

//
ε7

:B∼

E2

10



Let us consider the 2-iso

U9U7U6U1
U9U7·ε3+3 U9U7U5U3

U9·ε−1
5 +3 U9U8V1

ε7·V1 +3 U10S2V1
U10·γ1 +3 U10S1U1.

Then, since U1W1 and W1 are both in Σ, using the axiom BF4 twice, we get a 1-cell
U11 : E7 → E6 in Σ and a 2-iso ε8 : U11U9U7U6 ⇒ U11U10S1 such that

ε8 · U1 = (U11U9U7 · ε3) ◦ (U11U9 · ε−1
5 ) ◦ (U11 · ε7 · V1) ◦ (U11U10 · γ1). (7)

Using the identities (1), (3), (5) and (7), we get that

(U11U9 · ε6 ·W2) ◦ (U11 · ε7 · V2W2) = (U11U9U7 · ε4 ·W2) ◦ (ε8 · U2W2) ◦ (U11U10 · γ2 ·W2).

Therefore, since W2 ∈ Σ, by the axiom BF4, there exists an arrow U12 : E8 → E7 in Σ
such that

(U12U11U9 ·ε6)◦ (U12U11 ·ε7 ·V2) = (U12U11U9U7 ·ε4)◦ (U12 ·ε8 ·U2)◦ (U12U11U10 ·γ2). (8)

Finally, to prove that ϕ′ = ϕ, we consider the following diagram

H1

W1

  

H1

((∼

S1·α1

��
E3

U3 --

U4
11

E8
U12U11U10 //U12U11U9U7U5oo K

S1U1

>>

S1U2   

V P

H2

W2

>>

H2

66

∼

δ
��

with the 2-isos

(U12U11U9 · ε−1
5 ) ◦ (U12U11 · ε7 ·V1) ◦ (U12U11U10 · γ1) : U12U11U9U7U5U3 ⇒ U12U11U10S1U1

and

(U12U11U10 ·γ2)◦(U12U11 ·ε−1
7 ·V2)◦(U12U11U9 ·ε−1

6 ) : U12U11U10S1U2 ⇒ U12U11U9U7U5U4.

To prove the first coherence axiom, we use identities (1) and (5), while for the second one,
we use the universal property of the bipullback. Indeed, to prove it, it suffices to compose
each 2-cell with both T ′ and R′. The one composed with T ′ can be deduced from the
definition of δ and (6), while the one composed with R′ follows from the definition of δ,
(4), (7) and (8).

4 The snail lemma for fractors

In this section, A is a pointed exact category.

4.1. The 2-category Grpd(A) of internal groupoids in A has bipullbacks and, in par-
ticular, bikernels (in fact, Grpd(A) has strong h-pullbacks, and so it has bipullbacks,
see [19, 11]). Moreover, there are two 2-functors

π0 : Grpd(A)→ A and π1 : Grpd(A)→ Grp(A)
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(where A and Grp(A), the category of internal groups in A, are seen as discrete 2-
categories) respectively defined by the following coequalizer and kernel

A1
d //
c
// A0

ηA // π0(A) π1(A)
εA // A1

〈d,c〉 // A0 ×A0

where d and c are respectively the domain and codomain maps of the internal groupoid A.
For an internal functor F : A→ B, its bikernel is defined as the bipullback

K(F )
K(F ) //

��

A

F

��
0

k(F )

8@
∼

// B
and it is represented by

K(F )
K(F ) // A F // B.

The main result in [16] states that for any internal functor F , there is an exact sequence

π1(K(F ))
π1(K(F )) // π1(A)

π1(F ) // π1(B) // π0(K(F ))
π0(K(F )) // π0(A)

π0(F ) // π0(B).

Here, the exactness at B of

A
f // B

g // C

is intended in the sense that f factors as a regular epimorphism followed by the kernel
of g.

4.2. The class of weak equivalences in Grpd(A) has a right calculus of fractions (in the
bicategorical sense) [19]. The bicategory of fractions of Grpd(A) with respect to this class
of weak equivalences has been described in [15] (see also [1] if A is semi-abelian, [12] if
A is monadic, [2] if A has enough regular projective objects, and [18] for a description in
terms of anafunctors). The objects are internal groupoids, and the arrows are particular
profunctors called fractors: a fractor E : A# B is a diagram of the form

R

σ

~~ d ��

c

��

R[σ]
σ1

}} σ2
}}

ρ

!!
A1

d   

c

  

E

σ~~~~ ρ !!

B1

d

|| c||
A0 B0

where

- σ is a regular epimorphism, and R[σ] is its kernel pair;

- ρ coequalizes d, c : R⇒ E;

- (σ, σ) and (ρ, ρ) are discrete fibrations.

Given two fractors E : A # B and E′ : A # B, a 2-cell is just an arrow E → E′ in A
satisfying suitable compatibility conditions.
The main result in [15] states that the bicategory of fractions of Grpd(A) with respect
to weak equivalences is the embedding

F : Grpd(A)→ Fract(A)

of functors into fractors. Therefore, using Theorem 3.1, we have the following result.

12



Proposition 4.3.

1. The bicategory of fractors Fract(A) has bipullbacks and moreover the 2-functor
F : Grpd(A)→ Fract(A) preserves bipullbacks.

2. In particular, Fract(A) has bikernels and F : Grpd(A)→ Fract(A) preserves bik-
ernels.

From Lemma 4.5 in [16], we also know that the 2-functors π0 and π1 convert weak equiv-
alences in isomorphisms, so that they can be extended to the bicategory of fractions.

Grpd(A)
F //

π0

''

Fract(A)

π0

��

∼=

A

Grpd(A)
F //

π1 &&

Fract(A)

π1

��

∼=

Grp(A)

Now we are ready to extend the exact sequence of 4.1 to fractors.

Theorem 4.4. Let F : A # B be a fractor between groupoids in A, together with its
bikernel K(F ) : K(F )→ A. There exists an exact sequence

π1(K(F ))
π1(K(F )) // π1(A)

π1(F ) // π1(B) // π0(K(F ))
π0(K(F )) // π0(A)

π0(F ) // π0(B).

Proof. Since the class of weak equivalences in Grpd(A) has a right calculus of fractions (in
the bicategorical sense) [19], by construction of Grpd(A)[Σ−1] ' Fract(A), the fractor
F : A# B has a tabulation, i.e., there exist two internal functors

A FSoo R // B

with S a weak equivalence and such that F(S) ·F ∼= F(R). We also consider the bikernel

K(R)
K(R) // F R // B

of R in Grpd(A). By Proposition 4.3,

K(R)
F(K(R)) // F

F(R) // B

is a bikernel in Fract(A). Therefore, since F(S) is an equivalence, also

K(R)
F(K(R))·F(S)// A F // B

is a bikernel in Fract(A). In other words, the comparison S′ in the following diagram is
an equivalence.

K(R)
F(K(R)) //

S′

��

F
F(R) //

F(S)

��

B

1B
��

K(F )
K(F )

//

∼=

A
F

//

∼=

B

13



Now we can construct an exact sequence starting from the functor R : F → B as in 4.1,
and we get the first line of the following diagram.

π1(K(R))
π1(K(R)) //

∼=
��

π1(F)
π1(R) //

∼=
��

π1(B) //

∼=
��

π0(K(R))
π0(K(R)) //

∼=
��

π0(F)
π0(R) //

∼=
��

π0(B)

∼=
��

π1(K(R))
π1(F(K(R))) //

π1(S′)
��

π1(F)
π1(F(R)) //

π1(F(S))
��

π1(B)

id
��

π0(K(R))
π0(F(K(R))) //

π0(S′)
��

π0(F)
π0(F(R)) //

π0(F(S))
��

π0(B)

id
��

π1(K(F ))
π1(K(F ))

// π1(A)
π1(F )

// π1(B) π0(K(F ))
π0(K(F ))

// π0(A)
π0(F )

// π0(B)

Since S′ and F(S) are equivalences, all the columns are isomorphisms and the proof is
complete.

4.5. In [16], the π0-π1-exact sequence associated with an internal functor F : A → B is
obtained under the assumption that the groupoids A,B and K(F ) are proper. Here we
can omit this assumption, because our base category A is exact, so that all groupoids are
proper.
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